python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進(jìn)行簡單處理和分析
pip install scrapy fake-useragent requests selenium virtualenv -i https://pypi.douban.com/simple
1.1 創(chuàng)建虛擬環(huán)境
切換到指定目錄創(chuàng)建
virtualenv .venv
創(chuàng)建完記得激活虛擬環(huán)境
1.2 創(chuàng)建項(xiàng)目
scrapy startproject 項(xiàng)目名稱
1.3 使用pycharm打開項(xiàng)目,將創(chuàng)建的虛擬環(huán)境配置到項(xiàng)目中來1.4 創(chuàng)建京東spider
scrapy genspider 爬蟲名稱 url
1.5 修改允許訪問的域名,刪除https:
二、問題分析爬取數(shù)據(jù)的思路是先獲取首頁的基本信息,在獲取詳情頁商品詳細(xì)信息;爬取京東數(shù)據(jù)時(shí),只返回40條數(shù)據(jù),這里,作者使用selenium,在scrapy框架中編寫下載器中間件,返回頁面所有數(shù)據(jù)。爬取的字段分別是:
商品價(jià)格
商品評數(shù)
商品店家
商品SKU(京東可直接搜索到對應(yīng)的產(chǎn)品)
商品標(biāo)題
商品詳細(xì)信息
三、spiderimport reimport scrapyfrom lianjia.items import jd_detailItemclass JiComputerDetailSpider(scrapy.Spider): name = ’ji_computer_detail’ allowed_domains = [’search.jd.com’, ’item.jd.com’] start_urls = [’https://search.jd.com/Search?keyword=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&suggest=1.def.0.base&wq=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&page=1&s=1&click=0’] def parse(self, response):lls = response.xpath(’//ul[@class='gl-warp clearfix']/li’)for ll in lls: item = jd_detailItem() computer_price = ll.xpath(’.//div[@class='p-price']/strong/i/text()’).extract_first() computer_commit = ll.xpath(’.//div[@class='p-commit']/strong/a/text()’).extract_first() computer_p_shop = ll.xpath(’.//div[@class='p-shop']/span/a/text()’).extract_first() item[’computer_price’] = computer_price item[’computer_commit’] = computer_commit item[’computer_p_shop’] = computer_p_shop meta = {’item’: item } shop_detail_url = ll.xpath(’.//div[@class='p-img']/a/@href’).extract_first() shop_detail_url = ’https:’ + shop_detail_url yield scrapy.Request(url=shop_detail_url, callback=self.detail_parse, meta=meta)for i in range(2, 200, 2): next_page_url = f’https://search.jd.com/Search?keyword=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&suggest=1.def.0.base&wq=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&page={i}&s=116&click=0’ yield scrapy.Request(url=next_page_url, callback=self.parse) def detail_parse(self, response):item = response.meta.get(’item’)computer_sku = response.xpath(’//a[@class='notice J-notify-sale']/@data-sku’).extract_first()item[’computer_sku’] = computer_skucomputer_title = response.xpath(’//div[@class='sku-name']/text()’).extract_first().strip()computer_title = ’’.join(re.findall(’S’, computer_title))item[’computer_title’] = computer_titlecomputer_detail = response.xpath(’string(//ul[@class='parameter2 p-parameter-list'])’).extract_first().strip()computer_detail = ’’.join(re.findall(’S’, computer_detail))item[’computer_detail’] = computer_detailyield item四、item
class jd_detailItem(scrapy.Item): # define the fields for your item here like: computer_sku = scrapy.Field() computer_price = scrapy.Field() computer_title = scrapy.Field() computer_commit = scrapy.Field() computer_p_shop = scrapy.Field() computer_detail = scrapy.Field()五、setting
import randomfrom fake_useragent import UserAgentua = UserAgent()USER_AGENT = ua.randomROBOTSTXT_OBEY = FalseDOWNLOAD_DELAY = random.uniform(0.5, 1)DOWNLOADER_MIDDLEWARES = { ’lianjia.middlewares.jdDownloaderMiddleware’: 543}ITEM_PIPELINES = { ’lianjia.pipelines.jd_csv_Pipeline’: 300}六、pipelines
class jd_csv_Pipeline: # def process_item(self, item, spider): # return item def open_spider(self, spider):self.fp = open(’./jd_computer_message.xlsx’, mode=’w+’, encoding=’utf-8’)self.fp.write(’computer_skutcomputer_titletcomputer_p_shoptcomputer_pricetcomputer_committcomputer_detailn’) def process_item(self, item, spider):# 寫入文件try: line = ’t’.join(list(item.values())) + ’n’ self.fp.write(line) return itemexcept: pass def close_spider(self, spider):# 關(guān)閉文件self.fp.close()七、middlewares
class jdDownloaderMiddleware: def process_request(self, request, spider):# 判斷是否是ji_computer_detail的爬蟲# 判斷是否是首頁if spider.name == ’ji_computer_detail’ and re.findall(f’.*(item.jd.com).*’, request.url) == []: options = ChromeOptions() options.add_argument('--headless') driver = webdriver.Chrome(options=options) driver.get(request.url) for i in range(0, 15000, 5000):driver.execute_script(f’window.scrollTo(0, {i})’)time.sleep(0.5) body = driver.page_source.encode() time.sleep(1) return HtmlResponse(url=request.url, body=body, request=request)return None八、使用jupyter進(jìn)行簡單的處理和分析
其他文件:百度停用詞庫、簡體字文件下載第三方包
!pip install seaborn jieba wordcloud PIL -i https://pypi.douban.com/simple
8.1導(dǎo)入第三方包
import reimport osimport jiebaimport wordcloudimport pandas as pdimport numpy as npfrom PIL import Imageimport seaborn as snsfrom docx import Documentfrom docx.shared import Inchesimport matplotlib.pyplot as pltfrom pandas import DataFrame,Series
8.2設(shè)置可視化的默認(rèn)字體和seaborn的樣式
sns.set_style(’darkgrid’)plt.rcParams[’font.sans-serif’] = [’SimHei’]plt.rcParams[’axes.unicode_minus’] = False
8.3讀取數(shù)據(jù)
df_jp = pd.read_excel(’./jd_shop.xlsx’)
8.4篩選Inteli5、i7、i9處理器數(shù)據(jù)
def convert_one(s): if re.findall(f’.*?(i5).*’, str(s)) != []:return re.findall(f’.*?(i5).*’, str(s))[0] elif re.findall(f’.*?(i7).*’, str(s)) != []:return re.findall(f’.*?(i7).*’, str(s))[0] elif re.findall(f’.*?(i9).*’, str(s)) != []:return re.findall(f’.*?(i9).*’, str(s))[0]df_jp[’computer_intel’] = df_jp[’computer_detail’].map(convert_one)
8.5篩選筆記本電腦的屏幕尺寸范圍
def convert_two(s): if re.findall(f’.*?(d+.d+英寸-d+.d+英寸).*’, str(s)) != []:return re.findall(f’.*?(d+.d+英寸-d+.d+英寸).*’, str(s))[0]df_jp[’computer_in’] = df_jp[’computer_detail’].map(convert_two)
8.6將評論數(shù)轉(zhuǎn)化為整形
def convert_three(s): if re.findall(f’(d+)萬+’, str(s)) != []:number = int(re.findall(f’(d+)萬+’, str(s))[0]) * 10000return number elif re.findall(f’(d+)+’, str(s)) != []:number = re.findall(f’(d+)+’, str(s))[0]return numberdf_jp[’computer_commit’] = df_jp[’computer_commit’].map(convert_three)
8.7篩選出需要分析的品牌
def find_computer(name, s): sr = re.findall(f’.*({name}).*’, str(s))[0] return srdef convert(s): if re.findall(f’.*(聯(lián)想).*’, str(s)) != []:return find_computer(’聯(lián)想’, s) elif re.findall(f’.*(惠普).*’, str(s)) != []:return find_computer(’惠普’, s) elif re.findall(f’.*(華為).*’, str(s)) != []:return find_computer(’華為’, s) elif re.findall(f’.*(戴爾).*’, str(s)) != []:return find_computer(’戴爾’, s) elif re.findall(f’.*(華碩).*’, str(s)) != []:return find_computer(’華碩’, s) elif re.findall(f’.*(小米).*’, str(s)) != []:return find_computer(’小米’, s) elif re.findall(f’.*(榮耀).*’, str(s)) != []:return find_computer(’榮耀’, s) elif re.findall(f’.*(神舟).*’, str(s)) != []:return find_computer(’神舟’, s) elif re.findall(f’.*(外星人).*’, str(s)) != []:return find_computer(’外星人’, s)df_jp[’computer_p_shop’] = df_jp[’computer_p_shop’].map(convert)
8.8刪除指定字段為空值的數(shù)據(jù)
for n in [’computer_price’, ’computer_commit’, ’computer_p_shop’, ’computer_sku’, ’computer_detail’, ’computer_intel’, ’computer_in’]: index_ls = df_jp[df_jp[[n]].isnull().any(axis=1)==True].index df_jp.drop(index=index_ls, inplace=True)
8.9查看各品牌的平均價(jià)格
plt.figure(figsize=(10, 8), dpi=100)ax = sns.barplot(x=’computer_p_shop’, y=’computer_price’, data=df_jp.groupby(by=’computer_p_shop’)[[’computer_price’]].mean().reset_index())for index,row in df_jp.groupby(by=’computer_p_shop’)[[’computer_price’]].mean().reset_index().iterrows(): ax.text(row.name,row[’computer_price’] + 2,round(row[’computer_price’],2),color='black',ha='center')ax.set_xlabel(’品牌’)ax.set_ylabel(’平均價(jià)格’)ax.set_title(’各品牌平均價(jià)格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’各品牌平均價(jià)格.png’, dpi=400)
8.10 查看各品牌的價(jià)格區(qū)間
plt.figure(figsize=(10, 8), dpi=100)ax = sns.boxenplot(x=’computer_p_shop’, y=’computer_price’, data=df_jp.query(’computer_price>500’))ax.set_xlabel(’品牌’)ax.set_ylabel(’價(jià)格區(qū)間’)ax.set_title(’各品牌價(jià)格區(qū)間’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’各品牌價(jià)格區(qū)間.png’, dpi=400)
8.11 查看價(jià)格與評論數(shù)的關(guān)系
df_jp[’computer_commit’] = df_jp[’computer_commit’].astype(’int64’)ax = sns.jointplot(x='computer_commit', y='computer_price', data=df_jp, kind='reg', truncate=False,color='m', height=10)ax.fig.savefig(’評論數(shù)與價(jià)格的關(guān)系.png’)
8.12 查看商品標(biāo)題里出現(xiàn)的關(guān)鍵詞
import imageio# 將特征轉(zhuǎn)換為列表ls = df_jp[’computer_title’].to_list()# 替換非中英文的字符feature_points = [re.sub(r’[^a-zA-Zu4E00-u9FA5]+’,’ ’,str(feature)) for feature in ls]# 讀取停用詞stop_world = list(pd.read_csv(’./百度停用詞表.txt’, engine=’python’, encoding=’utf-8’, names=[’stopwords’])[’stopwords’])feature_points2 = []for feature in feature_points: # 遍歷每一條評論 words = jieba.lcut(feature) # 精確模式,沒有冗余.對每一條評論進(jìn)行jieba分詞 ind1 = np.array([len(word) > 1 for word in words]) # 判斷每個(gè)分詞的長度是否大于1 ser1 = pd.Series(words) ser2 = ser1[ind1] # 篩選分詞長度大于1的分詞留下 ind2 = ~ser2.isin(stop_world) # 注意取反負(fù)號 ser3 = ser2[ind2].unique() # 篩選出不在停用詞表的分詞留下,并去重 if len(ser3) > 0:feature_points2.append(list(ser3))# 將所有分詞存儲到一個(gè)列表中wordlist = [word for feature in feature_points2 for word in feature]# 將列表中所有的分詞拼接成一個(gè)字符串feature_str = ’ ’.join(wordlist) # 標(biāo)題分析font_path = r’./simhei.ttf’shoes_box_jpg = imageio.imread(’./home.jpg’)wc=wordcloud.WordCloud( background_color=’black’, mask=shoes_box_jpg, font_path = font_path, min_font_size=5, max_font_size=50, width=260, height=260,)wc.generate(feature_str)plt.figure(figsize=(10, 8), dpi=100)plt.imshow(wc)plt.axis(’off’)plt.savefig(’標(biāo)題提取關(guān)鍵詞’)
8.13 篩選價(jià)格在4000到5000,聯(lián)想品牌、處理器是i5、屏幕大小在15寸以上的數(shù)據(jù)并查看價(jià)格
df_jd_query = df_jp.loc[(df_jp[’computer_price’] <=5000) & (df_jp[’computer_price’]>=4000) & (df_jp[’computer_p_shop’]=='聯(lián)想') & (df_jp[’computer_intel’]=='i5') & (df_jp[’computer_in’]=='15.0英寸-15.9英寸'), :].copy()plt.figure(figsize=(20, 10), dpi=100)ax = sns.barplot(x=’computer_sku’, y=’computer_price’, data=df_jd_query)ax.set_xlabel(’聯(lián)想品牌SKU’)ax.set_ylabel(’價(jià)格’)ax.set_title(’酷睿i5處理器屏幕15寸以上各SKU的價(jià)格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’酷睿i5處理器屏幕15寸以上各SKU的價(jià)格.png’, dpi=400)
8.14 篩選價(jià)格在4000到5000,戴爾品牌、處理器是i7、屏幕大小在15寸以上的數(shù)據(jù)并查看價(jià)格
df_jp_daier = df_jp.loc[(df_jp[’computer_price’] <=5000) & (df_jp[’computer_price’]>=4000) & (df_jp[’computer_p_shop’]=='戴爾') & (df_jp[’computer_intel’]=='i7') & (df_jp[’computer_in’]=='15.0英寸-15.9英寸'), :].copy()plt.figure(figsize=(10, 8), dpi=100)ax = sns.barplot(x=’computer_sku’, y=’computer_price’, data=df_jp_daier)ax.set_xlabel(’戴爾品牌SKU’)ax.set_ylabel(’價(jià)格’)ax.set_title(’酷睿i7處理器屏幕15寸以上各SKU的價(jià)格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’酷睿i7處理器屏幕15寸以上各SKU的價(jià)格.png’, dpi=400)
8.15 不同Intel處理器品牌的價(jià)格
plt.figure(figsize=(10, 8), dpi=100)ax = sns.barplot(x=’computer_p_shop’, y=’computer_price’, data=df_jp, hue=’computer_intel’)ax.set_xlabel(’品牌’)ax.set_ylabel(’價(jià)格’)ax.set_title(’不同酷睿處理器品牌的價(jià)格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’不同酷睿處理器品牌的價(jià)格.png’, dpi=400)
8.16 不同尺寸品牌的價(jià)格
plt.figure(figsize=(10, 8), dpi=100)ax = sns.barplot(x=’computer_p_shop’, y=’computer_price’, data=df_jp, hue=’computer_in’)ax.set_xlabel(’品牌’)ax.set_ylabel(’價(jià)格’)ax.set_title(’不同尺寸品牌的價(jià)格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’不同尺寸品牌的價(jià)格.png’, dpi=400)
以上就是python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進(jìn)行簡單處理和分析的詳細(xì)內(nèi)容,更多關(guān)于python 爬取京東數(shù)據(jù)的資料請關(guān)注好吧啦網(wǎng)其它相關(guān)文章!
相關(guān)文章:
1. .Net加密神器Eazfuscator.NET?2023.2?最新版使用教程2. 詳解瀏覽器的緩存機(jī)制3. Xml簡介_動力節(jié)點(diǎn)Java學(xué)院整理4. python多線程和多進(jìn)程關(guān)系詳解5. 一款功能強(qiáng)大的markdown編輯器tui.editor使用示例詳解6. Python xlrd/xlwt 創(chuàng)建excel文件及常用操作7. python 寫函數(shù)在一定條件下需要調(diào)用自身時(shí)的寫法說明8. 存儲于xml中需要的HTML轉(zhuǎn)義代碼9. Python 實(shí)現(xiàn)勞拉游戲的實(shí)例代碼(四連環(huán)、重力四子棋)10. ASP動態(tài)網(wǎng)頁制作技術(shù)經(jīng)驗(yàn)分享
