av一区二区在线观看_亚洲男人的天堂网站_日韩亚洲视频_在线成人免费_欧美日韩精品免费观看视频_久草视

您的位置:首頁技術文章
文章詳情頁

python+opencv實現車道線檢測

瀏覽:4日期:2022-06-27 15:23:28

python+opencv車道線檢測(簡易實現),供大家參考,具體內容如下

技術棧:python+opencv

實現思路:

1、canny邊緣檢測獲取圖中的邊緣信息;2、霍夫變換尋找圖中直線;3、繪制梯形感興趣區域獲得車前范圍;4、得到并繪制車道線;

效果展示:

python+opencv實現車道線檢測

代碼實現:

import cv2import numpy as npdef canny(): gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY) #高斯濾波 blur = cv2.GaussianBlur(gray, (5, 5), 0) #邊緣檢測 canny_img = cv2.Canny(blur, 50, 150) return canny_imgdef region_of_interest(r_image): h = r_image.shape[0] w = r_image.shape[1] # 這個區域不穩定,需要根據圖片更換 poly = np.array([ [(100, h), (500, h), (290, 180), (250, 180)] ]) mask = np.zeros_like(r_image) # 繪制掩膜圖像 cv2.fillPoly(mask, poly, 255) # 獲得ROI區域 masked_image = cv2.bitwise_and(r_image, mask) return masked_imageif __name__ == ’__main__’: image = cv2.imread(’test.jpg’) lane_image = np.copy(image) canny = canny() cropped_image = region_of_interest(canny) cv2.imshow('result', cropped_image) cv2.waitKey(0)霍夫變換加線性擬合改良:

效果圖:

python+opencv實現車道線檢測

代碼實現:

主要增加了根據斜率作線性擬合過濾無用點后連線的操作;

import cv2import numpy as npdef canny(): gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY) blur = cv2.GaussianBlur(gray, (5, 5), 0) canny_img = cv2.Canny(blur, 50, 150) return canny_imgdef region_of_interest(r_image): h = r_image.shape[0] w = r_image.shape[1] poly = np.array([ [(100, h), (500, h), (280, 180), (250, 180)] ]) mask = np.zeros_like(r_image) cv2.fillPoly(mask, poly, 255) masked_image = cv2.bitwise_and(r_image, mask) return masked_imagedef get_lines(img_lines): if img_lines is not None: for line in lines: for x1, y1, x2, y2 in line: # 分左右車道 k = (y2 - y1) / (x2 - x1) if k < 0: lefts.append(line) else: rights.append(line)def choose_lines(after_lines, slo_th): # 過濾斜率差別較大的點 slope = [(y2 - y1) / (x2 - x1) for line in after_lines for x1, x2, y1, y2 in line] # 獲得斜率數組 while len(after_lines) > 0: mean = np.mean(slope) # 計算平均斜率 diff = [abs(s - mean) for s in slope] # 每條線斜率與平均斜率的差距 idx = np.argmax(diff) # 找到最大斜率的索引 if diff[idx] > slo_th: # 大于預設的閾值選取 slope.pop(idx) after_lines.pop(idx) else: break return after_linesdef clac_edgepoints(points, y_min, y_max): x = [p[0] for p in points] y = [p[1] for p in points] k = np.polyfit(y, x, 1) # 曲線擬合的函數,找到xy的擬合關系斜率 func = np.poly1d(k) # 斜率代入可以得到一個y=kx的函數 x_min = int(func(y_min)) # y_min = 325其實是近似找了一個 x_max = int(func(y_max)) return [(x_min, y_min), (x_max, y_max)]if __name__ == ’__main__’: image = cv2.imread(’F:A_javaProtest.jpg’) lane_image = np.copy(image) canny_img = canny() cropped_image = region_of_interest(canny_img) lefts = [] rights = [] lines = cv2.HoughLinesP(cropped_image, 1, np.pi / 180, 15, np.array([]), minLineLength=40, maxLineGap=20) get_lines(lines) # 分別得到左右車道線的圖片 good_leftlines = choose_lines(lefts, 0.1) # 處理后的點 good_rightlines = choose_lines(rights, 0.1) leftpoints = [(x1, y1) for left in good_leftlines for x1, y1, x2, y2 in left] leftpoints = leftpoints + [(x2, y2) for left in good_leftlines for x1, y1, x2, y2 in left] rightpoints = [(x1, y1) for right in good_rightlines for x1, y1, x2, y2 in right] rightpoints = rightpoints + [(x2, y2) for right in good_rightlines for x1, y1, x2, y2 in right] lefttop = clac_edgepoints(leftpoints, 180, image.shape[0]) # 要畫左右車道線的端點 righttop = clac_edgepoints(rightpoints, 180, image.shape[0]) src = np.zeros_like(image) cv2.line(src, lefttop[0], lefttop[1], (255, 255, 0), 7) cv2.line(src, righttop[0], righttop[1], (255, 255, 0), 7) cv2.imshow(’line Image’, src) src_2 = cv2.addWeighted(image, 0.8, src, 1, 0) cv2.imshow(’Finally Image’, src_2) cv2.waitKey(0)

待改進:

代碼實用性差,幾乎不能用于實際,但是可以作為初學者的練手項目;斑馬線檢測思路:獲取車前感興趣區域,判斷白色像素點比例即可實現;行人檢測思路:opencv有內置行人檢測函數,基于內置的訓練好的數據集;

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持好吧啦網。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 一级在线免费观看 | 男人的天堂中文字幕 | 亚洲人一区 | 日韩高清电影 | 亚洲精品一区二区三区 | 午夜免费视频 | 99久久久久久久久 | 先锋影音资源网站 | av一区二区三区在线观看 | 国产精品视频不卡 | 亚洲欧美综合精品久久成人 | 精品一区二区三区在线观看 | 欧美一区二区在线观看 | 免费黄色片在线观看 | 日本成人中文字幕在线观看 | 一区二区av | 天天干亚洲 | 亚洲成人精品国产 | 国产大学生情侣呻吟视频 | 99精品热视频 | 日韩精品视频一区二区三区 | 精品中文字幕一区二区 | 欧美一区二区免费在线 | 久久精品国产久精国产 | 97久久精品午夜一区二区 | 国产真实精品久久二三区 | 成人免费视频在线观看 | 精品欧美一区二区精品久久久 | 91一区二区在线观看 | 一区在线视频 | 久久久久久中文字幕 | 亚洲精品视频网站在线观看 | 精品香蕉一区二区三区 | 精品粉嫩aⅴ一区二区三区四区 | 狠狠av | 国产高清在线精品一区二区三区 | 欧美一级视频 | 欧美一区二区在线看 | 91人人澡人人爽 | 欧美一级高潮片免费的 | 亚洲视频在线观看 |