av一区二区在线观看_亚洲男人的天堂网站_日韩亚洲视频_在线成人免费_欧美日韩精品免费观看视频_久草视

您的位置:首頁(yè)技術(shù)文章
文章詳情頁(yè)

Python Pandas數(shù)據(jù)分析工具用法實(shí)例

瀏覽:5日期:2022-07-06 11:57:24

1、介紹

Pandas是基于Numpy的專(zhuān)業(yè)數(shù)據(jù)分析工具,可以靈活高效的處理各種數(shù)據(jù)集,也是我們后期分析案例的神器。它提供了兩種類(lèi)型的數(shù)據(jù)結(jié)構(gòu),分別是DataFrame和Series,我們可以簡(jiǎn)單粗暴的把DataFrame理解為Excel里面的一張表,而Series就是表中的某一列

2、創(chuàng)建DataFrame

# -*- encoding=utf-8 -*-import pandasif __name__ == ’__main__’: pass test_stu = pandas.DataFrame( {’高數(shù)’: [66, 77, 88, 99, 85], ’大物’: [88, 77, 85, 78, 65], ’英語(yǔ)’: [99, 84, 87, 56, 75]}, ) print(test_stu) stu = pandas.DataFrame( {’高數(shù)’: [66, 77, 88, 99, 85], ’大物’: [88, 77, 85, 78, 65], ’英語(yǔ)’: [99, 84, 87, 56, 75]}, index=[’小紅’, ’小李’, ’小白’, ’小黑’, ’小青’] # 指定index索引 ) print(stu)

運(yùn)行

高數(shù) 大物 英語(yǔ)0 66 88 991 77 77 842 88 85 873 99 78 564 85 65 75 高數(shù) 大物 英語(yǔ)小紅 66 88 99小李 77 77 84小白 88 85 87小黑 99 78 56小青 85 65 75

3、讀取CSV或Excel(.xlsx)進(jìn)行簡(jiǎn)單操作(增刪改查)

data.csv

Python Pandas數(shù)據(jù)分析工具用法實(shí)例

# -*- encoding=utf-8 -*-import pandasif __name__ == ’__main__’: pass data = pandas.read_csv(’data.csv’, engine=’python’) # 使用python分析引擎讀取csv文件 print(data.head(5)) # 顯示前5行, print(data.tail(5)) # 顯示后5行 print(data) # 顯示所有數(shù)據(jù) print(data[’height’]) # 顯示height列 print(data[[’height’, ’weight’]]) # 顯示height和weight列 data.to_csv(’write.csv’) # 保存到csv文件 data.to_excel(’write.xlsx’) # 保存到xlsx文件 data.info() # 查看數(shù)據(jù)信息(總行數(shù),有無(wú)空缺數(shù)據(jù),類(lèi)型) print(data.describe()) # (count非空值,mean均值、std標(biāo)準(zhǔn)差、min最小值、max最大值25%50%75%分位數(shù)。) data[’新增列’] = range(0, len(data)) # 類(lèi)似字典直接添加即可 print(data) new_data = data.drop(’新增列’, axis=1, inplace=False) # 刪除列,如果inplace為T(mén)rue則在源數(shù)據(jù)刪除,返回None,否則返回新數(shù)據(jù),不改動(dòng)源數(shù)據(jù) print(new_data) data[’體重+身高’] = data[’height’] + data[’weight’] print(data) data[’remark’] = data[’remark’].str.replace(’to’, ’’) # 操作字符串 print(data[’remark’]) data[’birth’] = pandas.to_datetime(data[’birth’]) # 轉(zhuǎn)為日期類(lèi)型 print(data[’birth’])

4、根據(jù)條件進(jìn)行篩選,截取

# -*- encoding=utf-8 -*-import pandasif __name__ == ’__main__’: pass data = pandas.read_csv(’data.csv’, engine=’python’) # 使用python分析引擎讀取csv文件 a = data.iloc[:12, ] # 截取0-12行,列全截 # print(a) b = data.iloc[:, [1, 3]] # 行全截,列1,3 # print(b) c = data.iloc[0:12, 0:4] # 截取行0-12,列0-4 # print(c) d = data[’sex’] == 1 # 查看性別為1(男)的 # print(d) f = data.loc[data[’sex’] == 1, :] # 查看性別為1(男)的 # print(f) g = data.loc[:, [’weight’, ’height’]] # 選取身高體重 # print(g) h = data.loc[data[’height’].isin([166, 175]), :] # 選取身高166,175的數(shù)據(jù) # print(h) h1 = data.loc[data[’height’].isin([166, 175]), [’weight’, ’height’]] # 選取身高166,175的數(shù)據(jù) # print(h1) i = data[’height’].mean() # 均值 j = data[’height’].std() # 方差 k = data[’height’].median() # 中位數(shù) l = data[’height’].min() # 最小值 m = data[’height’].max() # 最大值 # print(i) # print(j) # print(k) # print(l) # print(m) n = data.loc[ (data[’height’] > data[’height’].mean()) & (data[’weight’] > data[’weight’].mean()), :] # 身高大于身高均值,且體重大于體重均值,不能用and要用&如果是或用| print(n)

5、清Nan數(shù)據(jù),去重,分組,合并

# -*- encoding=utf-8 -*-import pandasif __name__ == ’__main__’: pass sheet1 = pandas.read_excel(’data.xlsx’, sheet_name=’Sheet1’) # 讀取sheet1 # print(sheet1) # print(’-------------------------’) sheet2 = pandas.read_excel(’data.xlsx’, sheet_name=’Sheet2’) # 讀取sheet2 # print(sheet2) # print(’-------------------------’) a = pandas.concat([sheet1, sheet2]) # 合并 # print(a) # print(’-------------------------’) b = a.dropna() # 刪除空數(shù)據(jù)nan,有nan的就刪除 # print(b) # print(’-------------------------’) b1 = a.dropna(subset=[’weight’]) # 刪除指定列的空數(shù)據(jù)nan # print(b1) # print(’-------------------------’) c = b.drop_duplicates() # 刪除重復(fù)數(shù)據(jù) # print(c) # print(’-------------------------’) d = b.drop_duplicates(subset=[’weight’]) # 刪除指定列的重復(fù)數(shù)據(jù) # print(d) # print(’-------------------------’) e = b.drop_duplicates(subset=[’weight’], keep=’last’) # 刪除指定列的重復(fù)數(shù)據(jù),保存最后一個(gè)相同數(shù)據(jù) # print(e) # print(’-------------------------’) f = a.sort_values([’weight’], ascending=False) # 從大到小排序weight # print(f) g = c.groupby([’sex’]).sum() # 根據(jù)sex分組,再求和 # print(g) g1 = c.groupby([’sex’], as_index=False).sum() # 根據(jù)sex分組,再求和,但sex不作為索引 # print(g1) g2 = c.groupby([’sex’, ’weight’]).sum() # 根據(jù)sex分組后再根據(jù)weight分組,再求和 # print(g2) h = pandas.cut(c[’weight’], bins=[80, 90, 100, 150, 200], ) # 根據(jù)區(qū)間分割體重 print(h) # print(’-------------------------’) c[’根據(jù)體重分割’] = h # 會(huì)有警告,未解決,但不影響結(jié)果 print(c)

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持好吧啦網(wǎng)。

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 亚洲狠狠 | 久久久久资源 | 2019精品手机国产品在线 | 久久精品国产亚洲一区二区三区 | 欧美一区二区三区在线免费观看 | 日韩精品一区二区三区在线观看 | 欧美黄色一区 | 国产精品99久久久久久宅男 | 欧美中文字幕一区二区 | 国产a视频 | 亚洲精品一区二区三区蜜桃久 | 亚洲成人av | 日韩一区二区av | 精品国产欧美一区二区三区成人 | 欧美淫 | 亚洲国产精品久久 | 亚洲二区视频 | 怡红院成人在线视频 | 久久99国产精品久久99果冻传媒 | 国产精品久久久久久久免费大片 | 国产精品国产馆在线真实露脸 | 中文字幕一二三区 | 暖暖成人免费视频 | 精品亚洲一区二区三区 | 国产精品久久久久久婷婷天堂 | 四色永久 | 色婷婷av一区二区三区软件 | 福利片在线看 | 伊人网国产 | 成年人视频在线免费观看 | 成人av鲁丝片一区二区小说 | 国产免费一区 | 精品亚洲一区二区三区 | 国产午夜精品一区二区三区嫩草 | 99精品视频在线 | 亚洲国产精品久久人人爱 | 久热久热 | 成人a视频在线观看 | 亚洲天堂中文字幕 | 综合一区二区三区 | 久久精品一区二区 |