av一区二区在线观看_亚洲男人的天堂网站_日韩亚洲视频_在线成人免费_欧美日韩精品免费观看视频_久草视

您的位置:首頁技術(shù)文章
文章詳情頁

python實現(xiàn)邏輯回歸的示例

瀏覽:58日期:2022-07-08 18:52:09

代碼

import numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets.samples_generator import make_classificationdef initialize_params(dims): w = np.zeros((dims, 1)) b = 0 return w, bdef sigmoid(x): z = 1 / (1 + np.exp(-x)) return zdef logistic(X, y, w, b): num_train = X.shape[0] y_hat = sigmoid(np.dot(X, w) + b) loss = -1 / num_train * np.sum(y * np.log(y_hat) + (1-y) * np.log(1-y_hat)) cost = -1 / num_train * np.sum(y * np.log(y_hat) + (1 - y) * np.log(1 - y_hat)) dw = np.dot(X.T, (y_hat - y)) / num_train db = np.sum(y_hat - y) / num_train return y_hat, cost, dw, dbdef linear_train(X, y, learning_rate, epochs): # 參數(shù)初始化 w, b = initialize_params(X.shape[1]) loss_list = [] for i in range(epochs): # 計算當前的預測值、損失和梯度 y_hat, loss, dw, db = logistic(X, y, w, b) loss_list.append(loss) # 基于梯度下降的參數(shù)更新 w += -learning_rate * dw b += -learning_rate * db # 打印迭代次數(shù)和損失 if i % 10000 == 0: print('epoch %d loss %f' % (i, loss)) # 保存參數(shù) params = { ’w’: w, ’b’: b } # 保存梯度 grads = { ’dw’: dw, ’db’: db } return loss_list, loss, params, gradsdef predict(X, params): w = params[’w’] b = params[’b’] y_pred = sigmoid(np.dot(X, w) + b) return y_predif __name__ == '__main__': # 生成數(shù)據(jù) X, labels = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, random_state=1, n_clusters_per_class=2) print(X.shape) print(labels.shape) # 生成偽隨機數(shù) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) # 劃分訓練集和測試集 offset = int(X.shape[0] * 0.9) X_train, y_train = X[:offset], labels[:offset] X_test, y_test = X[offset:], labels[offset:] y_train = y_train.reshape((-1, 1)) y_test = y_test.reshape((-1, 1)) print(’X_train=’, X_train.shape) print(’y_train=’, y_train.shape) print(’X_test=’, X_test.shape) print(’y_test=’, y_test.shape) # 訓練 loss_list, loss, params, grads = linear_train(X_train, y_train, 0.01, 100000) print(params) # 預測 y_pred = predict(X_test, params) print(y_pred[:10])

以上就是python實現(xiàn)邏輯回歸的示例的詳細內(nèi)容,更多關(guān)于python 邏輯回歸的資料請關(guān)注好吧啦網(wǎng)其它相關(guān)文章!

標簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 国产欧美精品一区二区三区 | 香蕉大人久久国产成人av | 日韩精品专区在线影院重磅 | sese视频在线观看 | 欧美老妇交乱视频 | 7777精品伊人久久精品影视 | 国产国语精品 | 97热在线 | 日韩精品在线观看一区二区 | 久久精品国产一区二区电影 | 久久久久久九九九九九九 | 精品久久久久一区二区国产 | 欧美精品成人一区二区三区四区 | 91传媒在线观看 | 99欧美精品 | 欧美精品网站 | 亚洲国产精品久久久 | 人人澡人人射 | 男人天堂社区 | 日日久 | 在线欧美亚洲 | 日韩欧美精品一区 | 日本精品一区二区 | 日韩精品久久久久 | 久久网国产 | 欧美日本韩国一区二区三区 | 国产在线一区二区 | 国产中文字幕网 | 日韩国产中文字幕 | 免费一区 | 91精品国产综合久久久久久丝袜 | 毛片免费在线 | 国产精品久久久久一区二区三区 | 日韩国产精品一区二区三区 | 亚洲精品乱码久久久久久黑人 | 日韩精品视频中文字幕 | 久久久久免费精品国产小说色大师 | 四虎影视免费在线 | 日韩午夜影院 | 欧美伊人久久久久久久久影院 | 男人久久天堂 |