av一区二区在线观看_亚洲男人的天堂网站_日韩亚洲视频_在线成人免费_欧美日韩精品免费观看视频_久草视

您的位置:首頁技術文章
文章詳情頁

Python pandas 列轉行操作詳解(類似hive中explode方法)

瀏覽:2日期:2022-07-25 10:02:46

最近在工作上用到Python的pandas庫來處理excel文件,遇到列轉行的問題。找了一番資料后成功了,記錄一下。

1. 如果需要爆炸的只有一列:

df=pd.DataFrame({’A’:[1,2],’B’:[[1,2],[1,2]]})dfOut[1]: A B0 1 [1, 2]1 2 [1, 2]

如果要爆炸B這一列,可以直接用explode方法(前提是你的pandas的版本要高于或等于0.25)

df.explode(’B’) A B 0 1 1 1 1 2 2 2 1 3 2 2

2. 如果需要爆炸的有2列及以上

df=pd.DataFrame({’A’:[1,2],’B’:[[1,2],[3,4]],’C’:[[1,2],[3,4]]})dfOut[592]: A B C0 1 [1, 2] [1, 2]1 2 [3, 4] [3, 4]

則可以用寫一個方法,如下代碼:

def unnesting(df, explode): idx = df.index.repeat(df[explode[0]].str.len()) df1 = pd.concat([ pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1) df1.index = idx return df1.join(df.drop(explode, 1), how=’left’) unnesting(df,[’B’,’C’])Out[2]: B C A0 1 1 10 2 2 11 3 3 21 4 4 2

補充知識:pandas:一列分解成多列 series.str.split(’,’,expand=True);pyspark 一列分解成多列

源shuju

question_id id0 17576 70391,703941 17576 70391,70392,70393,703942 17576 70391,703923 40430 155032,155033,1550344 40430 155032,155033,155034,1550355 40430 155033,155034,1550356 40430 155032,1550357 40430 155034,1550358 40430 155032,1550349 40430 155032,155034,15503510 40430 155033,15503411 40430 155032,15503312 40430 155033,15503513 40430 155032,155033,155035

pandas solution

df.join(df[’id’].str.split(’,’,expand=True)

result

0 1 2 30 70391 70394 None None1 70391 70392 70393 703942 70391 70392 None None3 155032 155033 155034 None4 155032 155033 155034 1550355 155033 155034 155035 None6 155032 155035 None None7 155034 155035 None None8 155032 155034 None None9 155032 155034 155035 None10 155033 155034 None None11 155032 155033 None None12 155033 155035 None None13 155032 155033 155035 None

#注意expand=True

df.join(df[’id’].str.split(’,’,expand=True))

question_id id 0 1 2 30 17576 70391,70394 70391 70394 None None1 17576 70391,70392,70393,70394 70391 70392 70393 703942 17576 70391,70392 70391 70392 None None3 40430 155032,155033,155034 155032 155033 155034 None4 40430 155032,155033,155034,155035 155032 155033 155034 1550355 40430 155033,155034,155035 155033 155034 155035 None6 40430 155032,155035 155032 155035 None None7 40430 155034,155035 155034 155035 None None8 40430 155032,155034 155032 155034 None None9 40430 155032,155034,155035 155032 155034 155035 None10 40430 155033,155034 155033 155034 None None11 40430 155032,155033 155032 155033 None None12 40430 155033,155035 155033 155035 None None13 40430 155032,155033,155035 155032 155033 155035 None

pyspark solution tdf=df.select(F.split(df.id,’,’).alias(’ss’),’question_id’,’count_num’) tdf.sort(’question_id’).show() res=tdf.select(F.explode(tdf.ss).alias(’new’),’question_id’,’count_num’)res.sort(’question_id’).show()res.groupBy(’question_id’,’new’).sum().sort(’question_id’).show()

result

Python pandas 列轉行操作詳解(類似hive中explode方法)

Python pandas 列轉行操作詳解(類似hive中explode方法)

以上這篇Python pandas 列轉行操作詳解(類似hive中explode方法)就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持好吧啦網。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 色爱av| 国产成人精品免费视频大全最热 | 日本免费视频 | 国产精品国产成人国产三级 | 一区二区蜜桃 | 久久极品 | 日本精品一区二区三区视频 | 国内精品免费久久久久软件老师 | 性高朝久久久久久久3小时 av一区二区三区四区 | 精品久久网 | avav在线看| www.4hu影院 | 色视频在线播放 | 少妇久久久久 | 理论片免费在线观看 | 久久久久久国产精品久久 | 成人欧美一区二区三区1314 | 亚洲精品亚洲人成人网 | 色网在线观看 | 欧美日一区二区 | 欧美日韩视频 | 永久www成人看片 | 天天看夜夜 | 国产成人麻豆免费观看 | 精品一级毛片 | 在线播放亚洲 | 日本超碰 | 精品国产91亚洲一区二区三区www | 午夜精品久久久久久久星辰影院 | 五月天婷婷激情 | 一级黄色影片在线观看 | 国产三级国产精品 | 日本视频一区二区 | 国产精品日韩一区二区 | 91精品国产91久久久久久最新 | 日韩精品视频在线 | 夜久久| 精品免费国产一区二区三区 | 欧美成人手机在线 | 欧美日韩成人在线观看 | 欧美亚洲国语精品一区二区 |