av一区二区在线观看_亚洲男人的天堂网站_日韩亚洲视频_在线成人免费_欧美日韩精品免费观看视频_久草视

您的位置:首頁技術文章
文章詳情頁

Python pandas 列轉行操作詳解(類似hive中explode方法)

瀏覽:2日期:2022-07-25 10:02:46

最近在工作上用到Python的pandas庫來處理excel文件,遇到列轉行的問題。找了一番資料后成功了,記錄一下。

1. 如果需要爆炸的只有一列:

df=pd.DataFrame({’A’:[1,2],’B’:[[1,2],[1,2]]})dfOut[1]: A B0 1 [1, 2]1 2 [1, 2]

如果要爆炸B這一列,可以直接用explode方法(前提是你的pandas的版本要高于或等于0.25)

df.explode(’B’) A B 0 1 1 1 1 2 2 2 1 3 2 2

2. 如果需要爆炸的有2列及以上

df=pd.DataFrame({’A’:[1,2],’B’:[[1,2],[3,4]],’C’:[[1,2],[3,4]]})dfOut[592]: A B C0 1 [1, 2] [1, 2]1 2 [3, 4] [3, 4]

則可以用寫一個方法,如下代碼:

def unnesting(df, explode): idx = df.index.repeat(df[explode[0]].str.len()) df1 = pd.concat([ pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1) df1.index = idx return df1.join(df.drop(explode, 1), how=’left’) unnesting(df,[’B’,’C’])Out[2]: B C A0 1 1 10 2 2 11 3 3 21 4 4 2

補充知識:pandas:一列分解成多列 series.str.split(’,’,expand=True);pyspark 一列分解成多列

源shuju

question_id id0 17576 70391,703941 17576 70391,70392,70393,703942 17576 70391,703923 40430 155032,155033,1550344 40430 155032,155033,155034,1550355 40430 155033,155034,1550356 40430 155032,1550357 40430 155034,1550358 40430 155032,1550349 40430 155032,155034,15503510 40430 155033,15503411 40430 155032,15503312 40430 155033,15503513 40430 155032,155033,155035

pandas solution

df.join(df[’id’].str.split(’,’,expand=True)

result

0 1 2 30 70391 70394 None None1 70391 70392 70393 703942 70391 70392 None None3 155032 155033 155034 None4 155032 155033 155034 1550355 155033 155034 155035 None6 155032 155035 None None7 155034 155035 None None8 155032 155034 None None9 155032 155034 155035 None10 155033 155034 None None11 155032 155033 None None12 155033 155035 None None13 155032 155033 155035 None

#注意expand=True

df.join(df[’id’].str.split(’,’,expand=True))

question_id id 0 1 2 30 17576 70391,70394 70391 70394 None None1 17576 70391,70392,70393,70394 70391 70392 70393 703942 17576 70391,70392 70391 70392 None None3 40430 155032,155033,155034 155032 155033 155034 None4 40430 155032,155033,155034,155035 155032 155033 155034 1550355 40430 155033,155034,155035 155033 155034 155035 None6 40430 155032,155035 155032 155035 None None7 40430 155034,155035 155034 155035 None None8 40430 155032,155034 155032 155034 None None9 40430 155032,155034,155035 155032 155034 155035 None10 40430 155033,155034 155033 155034 None None11 40430 155032,155033 155032 155033 None None12 40430 155033,155035 155033 155035 None None13 40430 155032,155033,155035 155032 155033 155035 None

pyspark solution tdf=df.select(F.split(df.id,’,’).alias(’ss’),’question_id’,’count_num’) tdf.sort(’question_id’).show() res=tdf.select(F.explode(tdf.ss).alias(’new’),’question_id’,’count_num’)res.sort(’question_id’).show()res.groupBy(’question_id’,’new’).sum().sort(’question_id’).show()

result

Python pandas 列轉行操作詳解(類似hive中explode方法)

Python pandas 列轉行操作詳解(類似hive中explode方法)

以上這篇Python pandas 列轉行操作詳解(類似hive中explode方法)就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持好吧啦網。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 在线观看网址你懂的 | 日韩视频专区 | 成人毛片网站 | 久久久亚洲精品视频 | 国产高潮在线观看 | 免费看黄网 | 日本a v在线播放 | 国产一区二区在线看 | 一区二区影院 | 久久久久久免费 | 欧美性猛交99久久久久99按摩 | 黄色三级在线 | 天堂综合网 | 成人午夜在线 | 亚洲成人一区二区 | 国产综合一区二区 | 天天视频国产 | 日韩在线免费播放 | 欧美另类视频 | 91在线观看视频 | 亚洲成人国产 | 天天拍天天射 | 激情综合网站 | 性免费视频 | 成人小视频在线 | 免费精品视频 | 国产欧美日韩视频 | 国产精品一区一区三区 | 在线观看黄色av | 天天爽| 亚洲福利片 | 成人午夜又粗又硬又大 | 四虎影 | 永久免费看片在线播放 | 国产成年人视频 | 欧美一级黄色录像 | 韩日视频 | 欧美精品日韩 | 国产日韩精品一区二区 | 日韩高清精品免费观看 | 玖玖在线视频 |