av一区二区在线观看_亚洲男人的天堂网站_日韩亚洲视频_在线成人免费_欧美日韩精品免费观看视频_久草视

您的位置:首頁技術文章
文章詳情頁

python 牛頓法實現(xiàn)邏輯回歸(Logistic Regression)

瀏覽:2日期:2022-07-08 11:01:21

本文采用的訓練方法是牛頓法(Newton Method)。

代碼

import numpy as npclass LogisticRegression(object): ''' Logistic Regression Classifier training by Newton Method ''' def __init__(self, error: float = 0.7, max_epoch: int = 100): ''' :param error: float, if the distance between new weight and old weight is less than error, the process of traing will break. :param max_epoch: if training epoch >= max_epoch the processof traing will break. ''' self.error = error self.max_epoch = max_epoch self.weight = None self.sign = np.vectorize(lambda x: 1 if x >= 0.5 else 0) def p_func(self, X_): '''Get P(y=1 | x) :param X_: shape = (n_samples + 1, n_features) :return: shape = (n_samples) ''' tmp = np.exp(self.weight @ X_.T) return tmp / (1 + tmp) def diff(self, X_, y, p): '''Get derivative :param X_: shape = (n_samples, n_features + 1) :param y: shape = (n_samples) :param p: shape = (n_samples) P(y=1 | x) :return: shape = (n_features + 1) first derivative ''' return -(y - p) @ X_ def hess_mat(self, X_, p): '''Get Hessian Matrix :param p: shape = (n_samples) P(y=1 | x) :return: shape = (n_features + 1, n_features + 1) second derivative ''' hess = np.zeros((X_.shape[1], X_.shape[1])) for i in range(X_.shape[0]): hess += self.X_XT[i] * p[i] * (1 - p[i]) return hess def newton_method(self, X_, y): '''Newton Method to calculate weight :param X_: shape = (n_samples + 1, n_features) :param y: shape = (n_samples) :return: None ''' self.weight = np.ones(X_.shape[1]) self.X_XT = [] for i in range(X_.shape[0]): t = X_[i, :].reshape((-1, 1)) self.X_XT.append(t @ t.T) for _ in range(self.max_epoch): p = self.p_func(X_) diff = self.diff(X_, y, p) hess = self.hess_mat(X_, p) new_weight = self.weight - (np.linalg.inv(hess) @ diff.reshape((-1, 1))).flatten() if np.linalg.norm(new_weight - self.weight) <= self.error: break self.weight = new_weight def fit(self, X, y): ''' :param X_: shape = (n_samples, n_features) :param y: shape = (n_samples) :return: self ''' X_ = np.c_[np.ones(X.shape[0]), X] self.newton_method(X_, y) return self def predict(self, X) -> np.array: ''' :param X: shape = (n_samples, n_features] :return: shape = (n_samples] ''' X_ = np.c_[np.ones(X.shape[0]), X] return self.sign(self.p_func(X_))

測試代碼

import matplotlib.pyplot as pltimport sklearn.datasetsdef plot_decision_boundary(pred_func, X, y, title=None): '''分類器畫圖函數(shù),可畫出樣本點和決策邊界 :param pred_func: predict函數(shù) :param X: 訓練集X :param y: 訓練集Y :return: None ''' # Set min and max values and give it some padding x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole gid Z = pred_func(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral) if title: plt.title(title) plt.show()

效果

python 牛頓法實現(xiàn)邏輯回歸(Logistic Regression)

更多機器學習代碼,請訪問 https://github.com/WiseDoge/plume

以上就是python 牛頓法實現(xiàn)邏輯回歸(Logistic Regression)的詳細內(nèi)容,更多關于python 邏輯回歸的資料請關注好吧啦網(wǎng)其它相關文章!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 日韩午夜片 | 3d动漫精品h区xxxxx区 | 日韩免费精品视频 | 国产福利一区二区三区 | 亚洲色综合 | 男人天堂av网 | 黄色福利视频 | 一区二区三区在线免费 | 男女久久久 | 在线观看一区 | 日韩欧美黄色片 | 成人激情在线观看 | 日本精品视频 | 一二三区视频 | 午夜美女福利 | 国产激情在线 | 国产一区久久 | 激情另类小说 | 国产高清在线观看 | 精品国产欧美一区二区三区成人 | 日韩一区二区不卡 | 伊人网在线播放 | 亚洲精品综合 | 成人黄色免费 | 天堂网亚洲 | 国产伦精品一区二区三区四区免费 | 午夜伦理福利 | 欧美午夜在线观看 | 国产一及片 | 天天躁日日躁狠狠躁 | 秋霞午夜鲁丝一区二区老狼 | 亚洲视频网 | 亚洲小说欧美激情另类 | 欧美在线免费观看 | 师生出轨h灌满了1v1 | 亚洲一区高清 | 免费视频久久久 | 欧美色图一区二区三区 | 欧美一二三 | 黄色片91 | 国产在线色 |