av一区二区在线观看_亚洲男人的天堂网站_日韩亚洲视频_在线成人免费_欧美日韩精品免费观看视频_久草视

您的位置:首頁技術(shù)文章
文章詳情頁

小 200 行 Python 代碼制作一個(gè)換臉程序

瀏覽:4日期:2022-07-25 16:37:55

小 200 行 Python 代碼制作一個(gè)換臉程序

簡介

在這篇文章中我將介紹如何寫一個(gè)簡短(200行)的 Python 腳本,來自動地將一幅圖片的臉替換為另一幅圖片的臉。

這個(gè)過程分四步:

檢測臉部標(biāo)記。 旋轉(zhuǎn)、縮放、平移和第二張圖片,以配合第一步。 調(diào)整第二張圖片的色彩平衡,以適配第一張圖片。 把第二張圖像的特性混合在第一張圖像中。

1.使用 dlib 提取面部標(biāo)記

該腳本使用 dlib 的 Python 綁定來提取面部標(biāo)記:

小 200 行 Python 代碼制作一個(gè)換臉程序

Dlib 實(shí)現(xiàn)了 Vahid Kazemi 和 Josephine Sullivan 的《使用回歸樹一毫秒臉部對準(zhǔn)》論文中的算法。算法本身非常復(fù)雜,但dlib接口使用起來非常簡單:

PREDICTOR_PATH = '/home/matt/dlib-18.16/shape_predictor_68_face_landmarks.dat' detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(PREDICTOR_PATH) def get_landmarks(im): rects = detector(im, 1) if len(rects) > 1: raise TooManyFaces if len(rects) == 0: raise NoFaces return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()])

get_landmarks()函數(shù)將一個(gè)圖像轉(zhuǎn)化成numpy數(shù)組,并返回一個(gè)68×2元素矩陣,輸入圖像的每個(gè)特征點(diǎn)對應(yīng)每行的一個(gè)x,y坐標(biāo)。

特征提取器(predictor)需要一個(gè)粗糙的邊界框作為算法輸入,由一個(gè)傳統(tǒng)的能返回一個(gè)矩形列表的人臉檢測器(detector)提供,其每個(gè)矩形列表在圖像中對應(yīng)一個(gè)臉。

2.用 Procrustes 分析調(diào)整臉部

現(xiàn)在我們已經(jīng)有了兩個(gè)標(biāo)記矩陣,每行有一組坐標(biāo)對應(yīng)一個(gè)特定的面部特征(如第30行的坐標(biāo)對應(yīng)于鼻頭)。我們現(xiàn)在要解決如何旋轉(zhuǎn)、翻譯和縮放第一個(gè)向量,使它們盡可能適配第二個(gè)向量的點(diǎn)。一個(gè)想法是可以用相同的變換在第一個(gè)圖像上覆蓋第二個(gè)圖像。

將這個(gè)問題數(shù)學(xué)化,尋找T,s 和 R,使得下面這個(gè)表達(dá)式:

小 200 行 Python 代碼制作一個(gè)換臉程序

結(jié)果最小,其中R是個(gè)2×2正交矩陣,s是標(biāo)量,T是二維向量,pi和qi是上面標(biāo)記矩陣的行。

事實(shí)證明,這類問題可以用“常規(guī) Procrustes 分析法”解決:

def transformation_from_points(points1, points2): points1 = points1.astype(numpy.float64) points2 = points2.astype(numpy.float64) c1 = numpy.mean(points1, axis=0) c2 = numpy.mean(points2, axis=0) points1 -= c1 points2 -= c s1 = numpy.std(points1) s2 = numpy.std(points2) points1 /= s1 points2 /= s2 U, S, Vt = numpy.linalg.svd(points1.T * points2) R = (U * Vt).T return numpy.vstack([numpy.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)), numpy.matrix([0., 0., 1.])])

代碼實(shí)現(xiàn)了這幾步:

將輸入矩陣轉(zhuǎn)換為浮點(diǎn)數(shù)。這是后續(xù)操作的基礎(chǔ)。 每一個(gè)點(diǎn)集減去它的矩心。一旦為點(diǎn)集找到了一個(gè)最佳的縮放和旋轉(zhuǎn)方法,這兩個(gè)矩心 c1 和 c2 就可以用來找到完整的解決方案。 同樣,每一個(gè)點(diǎn)集除以它的標(biāo)準(zhǔn)偏差。這會消除組件縮放偏差的問題。 使用奇異值分解計(jì)算旋轉(zhuǎn)部分。可以在維基百科上看到關(guān)于解決正交 Procrustes 問題的細(xì)節(jié)。 利用仿射變換矩陣返回完整的轉(zhuǎn)化。

其結(jié)果可以插入 OpenCV 的 cv2.warpAffine 函數(shù),將圖像二映射到圖像一:

def warp_im(im, M, dshape): output_im = numpy.zeros(dshape, dtype=im.dtype) cv2.warpAffine(im, M[:2], (dshape[1], dshape[0]), dst=output_im, borderMode=cv2.BORDER_TRANSPARENT, flags=cv2.WARP_INVERSE_MAP) return output_im

對齊結(jié)果如下:

小 200 行 Python 代碼制作一個(gè)換臉程序

3.校正第二張圖像的顏色

如果我們試圖直接覆蓋面部特征,很快會看到這個(gè)問題:

小 200 行 Python 代碼制作一個(gè)換臉程序

這個(gè)問題是兩幅圖像之間不同的膚色和光線造成了覆蓋區(qū)域的邊緣不連續(xù)。我們試著修正:

COLOUR_CORRECT_BLUR_FRAC = 0.6 LEFT_EYE_POINTS = list(range(42, 48)) RIGHT_EYE_POINTS = list(range(36, 42)) def correct_colours(im1, im2, landmarks1): blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm(numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -numpy.mean(landmarks1[RIGHT_EYE_POINTS], axis=0)) blur_amount = int(blur_amount) if blur_amount % 2 == 0: blur_amount += 1 im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0) im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0) # Avoid divide-by-zero errors. im2_blur += 128 * (im2_blur <= 1.0) return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) / im2_blur.astype(numpy.float64))

結(jié)果如下:

小 200 行 Python 代碼制作一個(gè)換臉程序

此函數(shù)試圖改變 im2 的顏色來適配 im1。它通過用 im2 除以 im2 的高斯模糊值,然后乘以im1的高斯模糊值。這里的想法是用RGB縮放校色,但并不是用所有圖像的整體常數(shù)比例因子,每個(gè)像素都有自己的局部比例因子。

用這種方法兩圖像之間光線的差異只能在某種程度上被修正。例如,如果圖像1是從一側(cè)照亮,但圖像2是被均勻照亮的,色彩校正后圖像2也會出現(xiàn)未照亮一側(cè)暗一些的問題。

也就是說,這是一個(gè)相當(dāng)簡陋的辦法,而且解決問題的關(guān)鍵是一個(gè)適當(dāng)?shù)母咚购撕瘮?shù)大小。如果太小,第一個(gè)圖像的面部特征將顯示在第二個(gè)圖像中。過大,內(nèi)核之外區(qū)域像素被覆蓋,并發(fā)生變色。這里的內(nèi)核用了一個(gè)0.6 *的瞳孔距離。

4.把第二張圖像的特征混合在第一張圖像中

用一個(gè)遮罩來選擇圖像2和圖像1的哪些部分應(yīng)該是最終顯示的圖像:

小 200 行 Python 代碼制作一個(gè)換臉程序

值為1(顯示為白色)的地方為圖像2應(yīng)該顯示出的區(qū)域,值為0(顯示為黑色)的地方為圖像1應(yīng)該顯示出的區(qū)域。值在0和1之間為圖像1和圖像2的混合區(qū)域。

我們把上述過程分解:

get_face_mask()的定義是為一張圖像和一個(gè)標(biāo)記矩陣生成一個(gè)遮罩,它畫出了兩個(gè)白色的凸多邊形:一個(gè)是眼睛周圍的區(qū)域,一個(gè)是鼻子和嘴部周圍的區(qū)域。之后它由11個(gè)像素向遮罩的邊緣外部羽化擴(kuò)展,可以幫助隱藏任何不連續(xù)的區(qū)域。 這樣一個(gè)遮罩同時(shí)為這兩個(gè)圖像生成,使用與步驟2中相同的轉(zhuǎn)換,可以使圖像2的遮罩轉(zhuǎn)化為圖像1的坐標(biāo)空間。 之后,通過一個(gè)element-wise最大值,這兩個(gè)遮罩結(jié)合成一個(gè)。結(jié)合這兩個(gè)遮罩是為了確保圖像1被掩蓋,而顯現(xiàn)出圖像2的特性。

最后,使用遮罩得到最終的圖像:

output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask

小 200 行 Python 代碼制作一個(gè)換臉程序

總結(jié)

到此這篇關(guān)于小 200 行 Python 代碼制作一個(gè)換臉程序的文章就介紹到這了,更多相關(guān)python 換臉程序內(nèi)容請搜索好吧啦網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持好吧啦網(wǎng)!

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 精品国产一区久久 | 久久高清国产视频 | 色99视频 | 国产麻豆乱码精品一区二区三区 | 在线视频成人 | 精品国产精品国产偷麻豆 | 97偷拍视频 | 视频一区二区在线观看 | 成年人网站在线观看视频 | 午夜在线视频 | 亚洲成人网在线观看 | 美女黄视频网站 | 一区二区在线免费观看视频 | 国产精品免费大片 | 国产精品久久久 | 超碰免费在线观看 | 中文字幕乱码一区二区三区 | 国产精品久久久久久亚洲调教 | 久久精品亚洲精品 | 国产乱码精品一区二区三区中文 | 天天插天天操 | 精品一区二区三区在线观看国产 | 国产精品亚洲精品 | 免费三级网站 | 亚洲国产精品成人无久久精品 | 99久久国产综合精品麻豆 | 免费看国产精品视频 | av毛片| 欧美一区二区三区四区视频 | 日韩福利片 | 成年人免费看的视频 | 中文字幕在线一区 | 伦理午夜电影免费观看 | 欧美黄色一区 | 精品日韩在线 | 一级免费视频 | 日韩精品一区中文字幕 | 中文字幕一区二区三区乱码图片 | 亚洲一区二区av | 中文字幕乱码一区二区三区 | 亚洲劲爆av|